Nitric oxide and cyclic GMP are messengers in the indole acetic acid-induced adventitious rooting process.

نویسندگان

  • Gabriela Carolina Pagnussat
  • María Luciana Lanteri
  • Lorenzo Lamattina
چکیده

This report describes part of the signaling pathway and some of the molecules involved in the auxin-induced adventitious root formation in cucumber (Cucumis sativus). Previous results showed that nitric oxide (NO) mediates the auxin response during adventitious root formation (Pagnussat et al., 2002). To determine the order of action of indole acetic acid (IAA) and NO within the signal transduction pathway and to elucidate the target molecules that are downstream of NO action, cucumber hypocotyl cuttings were submitted to a pretreatment leading to endogenous auxin depletion. The auxin depletion treatment provoked a 3-fold reduction of the root number in comparison to the nondepleted explants. The NO-donor sodium nitroprusside was able to promote adventitious rooting in auxin-depleted explants, whereas the specific NO scavenger cPTIO prevented the effect of sodium nitroprusside. The endogenous NO level was monitored in both control and auxin-depleted explants using a NO-specific fluorescent probe. The NO level was 3.5-fold higher in control (nondepleted) explants than in auxin-depleted ones. The exogenous application of IAA restored the NO concentration to the level found in nondepleted explants. Because NO activates the enzyme guanylate cyclase (GC), we analyzed the involvement of the messenger cGMP in the adventitious root development mediated by IAA and NO. The GC inhibitor LY83583 reduced root development induced by IAA and NO, whereas the cell-permeable cGMP derivative 8-Br-cGMP reversed this effect. The endogenous level of cGMP is regulated by both the synthesis via GC and its degradation by the phosphodiesterase activity. When assayed, the phosphodiesterase inhibitor sildenafil citrate was able to induce adventitious rooting in both nondepleted and auxin-depleted explants. Results indicate that NO operates downstream of IAA promoting adventitious root development through the GC-catalyzed synthesis of cGMP.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nitric oxide mediates the indole acetic acid induction activation of a mitogen-activated protein kinase cascade involved in adventitious root development.

Recently, it was demonstrated that nitric oxide (NO) and cGMP are involved in the auxin response during the adventitious rooting process in cucumber (Cucumis sativus; Pagnussat et al., 2002, 2003). However, not much is known about the complex molecular network operating during the cell proliferation and morphogenesis triggered by auxins and NO in that process. Anatomical studies showed that for...

متن کامل

Adventitious rooting declines with the vegetative to reproductive switch and involves a changed auxin homeostasis

Adventitious rooting, whereby roots form from non-root tissues, is critical to the forestry and horticultural industries that depend on propagating plants from cuttings. A major problem is that age of the tissue affects the ability of the cutting to form adventitious roots. Here, a model system has been developed using Pisum sativum to differentiate between different interpretations of ageing. ...

متن کامل

Analysis of indole-3-butyric acid-induced adventitious root formation on Arabidopsis stem segments.

Root induction by auxins is still not well understood at the molecular level. In this study a system has been devised which distinguishes between the two active auxins indole-3-butyric acid (IBA) and indole-3-acetic acid (IAA). IBA, but not IAA, efficiently induced adventitious rooting in Arabidopsis stem segments at a concentration of 10 microM. In wild-type plants, roots formed exclusively ou...

متن کامل

The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process.

Indole acetic acid (IAA) is an important regulator of adventitious rooting via the activation of complex signaling cascades. In animals, carbon monoxide (CO), mainly generated by heme oxygenases (HOs), is a significant modulator of inflammatory reactions, affecting cell proliferation and the production of growth factors. In this report, we show that treatment with the auxin transport inhibitor ...

متن کامل

Relationship between Indole-3-Acetic Acid Levels in Apple (Malus pumila Mill) Rootstocks Cultured in Vitro and Adventitious Root Formation in the Presence of Indole-3-Butyric Acid.

In vitro rooting response and indole-3-acetic acid (IAA) levels were examined in two genetically related dwarfing apple (Malus pumila Mill) rootstocks. M.26 and M.9 were cultured in vitro using Linsmaier-Skoog medium supplemented with benzyladenine (BA), indole-3-butyric acid (IBA), and 1,3,5-trihydroxybenzoic acid (PG). Rooting response was tested in Lepoivre medium supplemented with IBA and P...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Plant physiology

دوره 132 3  شماره 

صفحات  -

تاریخ انتشار 2003